Influence of Monomer Sequence on the Cyclization Behavior of Poly(acrylonitrile-co-acrylamide)

Author:

Toms Roman V.1ORCID,Balashov Mikhail S.1,Gervald Alexander Yu.1ORCID,Prokopov Nikolay I.1,Plutalova Anna V.2,Chernikova Elena V.2ORCID

Affiliation:

1. Institute of Fine Chemical Technologies Named by M.V. Lomonosov, MIREA—Russian Technological University, Vernadsky Avenue 86, 119571 Moscow, Russia

2. Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia

Abstract

In this research, we have developed the approach to controlled synthesis of acrylonitrile-acrylamide copolymers with narrow molecular weight distribution and various monomer sequence distributions. By using dibenzyl trithiocarbonate and batch/semibatch polymerization, we have first synthesized random, gradient, and block-gradient copolymers containing 3.4–10.2 mol. % of acrylamide and revealed the influence of the monomer sequence on the cyclization behavior of poly(acrylonitrile-co-acrylamide) by combination of differential scanning calorimetry and Fourier transform infrared spectroscopy. This allowed us to find differences in cyclization behavior of the copolymers in argon and air atmosphere. Intramolecular cyclization was the main process proceeding in argon atmosphere. The radical mechanism of cyclization was suppressed already at the molar part of acrylamide units in copolymer exceeding ~3 mol. % for random copolymer and ~6 mol. % for block-gradient copolymer. The activation energy of ionic cyclization was equal to 89 ± 3 kJ·mol−1 and was not influenced by both copolymer composition and chain microstructure in contrast to the rate of cyclization. The latter was increased with the rise of acrylamide content, the content of hetero-triads and in the range block-gradient < gradient < random structure. In air atmosphere, the oxidation reactions dominated over cyclization. The oxidation reactions were found to be less sensitive to copolymer composition and chain microstructure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3