SYSML4TA: A SysML Profile for Consistent Tolerance Analysis in a Manufacturing System Case Application

Author:

Benavent-Nácher Sergio1ORCID,Rosado Castellano Pedro1,Romero Subirón Fernando1,Abellán-Nebot José Vicente1ORCID

Affiliation:

1. Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat, s/n 7, 12071 Castellón de la Plana, Spain

Abstract

Tolerance analysis is a key engineering task that is usually supported by domain-specific analysis models and tools that are generally not connected to the system functionality. The model-based system engineering (MBSE) approach is a potential solution to this limitation, but it has not yet been deeply explored in this type of mechanical analysis, for which some problems need to be explored. One of these issues is the capacity of languages such as SysML to describe solution principles based on active surfaces that participate in functionality and are present for tolerance analysis. Thus, this study explored the possibilities that enable SysML to represent these geometries and their mathematical relationships based on Topologically and Technologically Related Surfaces (TTRS) theory and aligned with Geometric Dimensioning and Tolerancing (GD&T) standards. Additionally, the capacity of SysML to assure the consistency of tolerance analysis models is also explored, due to the limitations identified in analysis languages like Modelica. In this context, this paper presents a SysML profile for tolerance analysis modeling (SysML4TA), containing domain-specific semantics (concepts and constraints) to assure the completeness of the analysis models and consistency between the different models considered in the integrated model of the system. Finally, a case study applied to a manufacturing context is presented to validate the capacity of SysML to solve the identified problems.

Funder

“Pla de Promoció de la Investigació a l’UJI” of UNIVERSITAT JAUME I.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3