Response of Seismically Damaged Steel Reduced Beam Section Joints under Fire

Author:

Tartaglia Roberto1ORCID,D’Aniello Mario2ORCID,Landolfo Raffaele2

Affiliation:

1. Department of Engineering (DING), University of Sannio, 82100 Benevento, Italy

2. Department of Structures for Engineering and Architecture, University of Naples Federico II, 80131 Naples, Italy

Abstract

The behaviour of seismically damaged steel joints with reduced beam section (RBS) at elevated temperatures has not been widely investigated yet. Therefore, the study summarized in this article aimed to (i) analyse the response of RBS joints at high temperatures and (ii) investigate the influence of plastic damage, due to cyclic loading, on the fire performance of the joints. A set of RBS joints with rib stiffeners on the both lower and upper beam flanges was designed according to European standards and the following parameters were considered: (i) location of the joint (i.e., internal or external joint) and (ii) reduction in the beam flexural resistance (i.e., 65% or 80% of the beam plastic moment). The mechanical response of these joints was simulated by means of finite element models (FEM). The accuracy and effectiveness of the adopted modelling assumptions to mimic the seismic response of the joints were validated against experimental results available from the existing literature. The numerical results highlight that under cyclic loading, all investigated joints exhibit ductile behaviour, allowing the concentration of the plastic deformation within the reduced segment of the beam. The designed reduction in the beam flexural resistance influences the joint fire performance, being impaired in the cases with lower flexural resistance. In contrast, the imposed cyclic pre-damage does not appreciably affect the fire resistance of the investigated joints.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3