An Improved Marker Code Scheme Based on Nucleotide Bases for DNA Data Storage

Author:

Tong Jian1,Han Guojun1ORCID,Sun Yi1

Affiliation:

1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Due to the rapid growth in the global volume of data, deoxyribonucleic acid (DNA) data storage has emerged. Error correction in DNA data storage is a key part of this storage technology. In this paper, an improved marker code scheme is proposed to correct insertion, deletion, and substitution errors in deoxyribonucleic acid (DNA) data storage. To correct synchronization (i.e., insertion and deletion) errors, a novel base-symbol-based synchronization algorithm is proposed and used. In the improved scheme, the marker bits are encoded as the information part of the LDPC code, and then mapped into marker bases to correct the synchronization errors. Thus marker bits not only assist in regaining synchronization, but also play a role in LDPC decoding to improve decoding performance. An improved low-complexity normalized min-sum (INMS) algorithm is proposed to correct residual substitution errors after regaining synchronization. The simulation results demonstrate that the improved scheme provides a substantial performance improvement over the concatenated marker code scheme and concatenated watermark code scheme. At the same time, the complexity of the INMS algorithm was reduced, while its bit error rate (BER) performance was approximate to that of the belief propagation (BP) algorithm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference19 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VSD: A Novel Method for Video Segmentation and Storage in DNA Using RS Code;Mathematics;2024-04-19

2. Storing Images in DNA via base128 Encoding;Journal of Chemical Information and Modeling;2024-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3