Deterioration Process of Cementitious Material Properties under Internal Sulphate Attack

Author:

Zhong Chao12,Huang Bei12

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China

2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China

Abstract

As one of the important factors affecting the structural durability of cementitious materials, sulphate erosion not only reduces the service life of the material but also poses a threat to the structural safety of the project. At present, scholars around the world have conducted extensive research on topics related to external sulphate attacks and have achieved fruitful results. However, the process and mechanism of attack degradation of the gelling material are not clear. In this paper, gypsum sand was introduced into the mortar. The effects of gypsum content, gypsum particle size and curing temperature on physical properties such as expansion and strength of specimens were investigated. X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC), Scanning Electron Microscopy (SEM) and energy dispersive spectrometry (EDS) were used to analyse specimens’ phase composition and microstructure evolution at different attack ages. Finally, cementitious materials’ degradation process and mechanism under internal sulphate attack (ISA) were analysed. Through the above research, the following main conclusions are drawn: (1) The swelling rate of cement mortar specimens all increased with the increase of gypsum dosing; (2) The expansion of cement pastes and mortars does not increase with the increase in curing temperature; (3) The gypsum particle sizes are smaller, the expansion of mortar specimens is larger, and the loss of compressive and bending strength of mortar specimens is large; and (4) The main reaction product of ISA is Ettringite (AFt). The gypsum formed during the ISA process does not cause expansion, while AFt is the main reason for the destruction of the cementitious material.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Yishen, D. (2011). Experimental Study on the Durability of Concrete under Sulfate Attack, Zhejiang University.

2. Durability experiments on sulfate and chloride salt attack of underground concrete structures;Xiaobin;J. Cent. South Univ.,2012

3. Meyer, Y.A., Menezes, I., Bonatti, R.S., Bortolozo, A.D., and Osório, W.R. (2022). EIS investigation of the corrosion behavior of steel bars embedded into modified concretes with eggshell contents. Metals, 12.

4. Jia-Ming, Z. (2009). Study on the Effect of Dry and Wet Cycles and Carbonation on Sulfate Attack of Concrete, Yangzhou University.

5. Numerial simulation on time-dependent mechanical behavior of concrete under coupled axial loading and sulfate attack;Yin;Ocean. Eng.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3