A Novel Small Target Detection Strategy: Location Feature Extraction in the Case of Self-Knowledge Distillation

Author:

Liu Gaohua1,Li Junhuan2,Yan Shuxia2,Liu Rui3

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

2. School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China

3. School of Software, Tiangong University, Tianjin 300387, China

Abstract

Small target detection has always been a hot and difficult point in the field of target detection. The existing detection network has a good effect on conventional targets but a poor effect on small target detection. The main challenge is that small targets have few pixels and are widely distributed in the image, so it is difficult to extract effective features, especially in the deeper neural network. A novel plug-in to extract location features of the small target in the deep network was proposed. Because the deep network has a larger receptive field and richer global information, it is easier to establish global spatial context mapping. The plug-in named location feature extraction establishes the spatial context mapping in the deep network to obtain the global information of scattered small targets in the deep feature map. Additionally, the attention mechanism can be used to strengthen attention to the spatial information. The comprehensive effect of the above two can be utilized to realize location feature extraction in the deep network. In order to improve the generalization of the network, a new self-distillation algorithm was designed for pre-training that could work under self-supervision. The experiment was conducted on the public datasets (Pascal VOC and Printed Circuit Board Defect dataset) and the self-made dedicated small target detection dataset, respectively. According to the diagnosis of the false-positive error distribution, the location error was significantly reduced, which proved the effectiveness of the plug-in proposed for location feature extraction. The mAP results can prove that the detection effect of the network applying the location feature extraction strategy is much better than the original network.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3