Production of Sustainable Postbiotics from Sugarcane Straw for Potential Food Applications

Author:

Oliveira Ana L. S.1ORCID,Seara Marta1,Carvalho Maria João1,de Carvalho Nelson Mota1ORCID,Costa Eduardo M.1ORCID,Silva Sara1ORCID,Duarte Marco1,Pintado Manuela1ORCID,Oliveira Carla1,Madureira Ana Raquel1

Affiliation:

1. CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal

Abstract

The production of postbiotics for food applications has been growing in recent years owing to their biological potential and superior technological performance over probiotics. Their production involves the use of synthetic culture media, and in this work, we propose using sugarcane straw as a source of sugar and biological components and a sustainable alternative. Thus, this by-product was used as a substrate to produce a postbiotic extract using Saccharomyces cerevisiae as a fermentative microorganism. Sugarcane straw underwent a precedent saccharification step to release the fermentable sugars. The final extracts were characterized for their total content of sugars, phenolic compounds, organic acids, and their respective chromatographic profiles. Seventeen different polyphenols were identified with the predominance of three classes, the hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids, where ferulic acid, 3,4-dihydroxybenzaldehyde, and 2,5-dihydroxybenzoic acid were most prevalent. The current work evaluated the potential use of this postbiotic extract for food applications, its antioxidant activity, gut microbiota modulatory effect, and intestinal anti-inflammatory potential. The resultant extracts showed considerable antioxidant activity and the ability to lower the pro-inflammatory mediators (i.e., interleukin 6, 8, and tumor necrosis factor-alpha) in Caco-2 cells. During the fecal fermentability assay, no modulatory effect was observed on the main beneficial bacteria, such as Lactobacillus and Bifidobacterium. Nevertheless, a significant increase in short-chain fatty acids, namely, acetate, propionate, butyrate, and valerate was observed. Moreover, the extract also demonstrated capacity to inhibit the proliferation of putrefactive bacteria such as Enterobacteriaceae. Finally, sustainable postbiotic extracts produced by S. cerevisiae fermentation using sugarcane straw as a substrate exhibited relevant biological properties with potential use as food and nutraceutical ingredients.

Funder

Fundo Europeu de Desenvolvimento Regional

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3