Abstract
Building-level electrical distribution systems comprise a myriad of current-carrying equipment, conversion devices, and protection devices that deliver power from the utility or local distributed energy resources to end-use building loads. Electric power has traditionally been generated, transmitted, and distributed in alternating current (AC). However, the last decade has seen a significant increase in the integration of native direct current (DC) equipment that has elevated the importance of DC distribution systems. Numerous studies have comparatively examined the performance of various electrical distribution systems in buildings but have failed to achieve uniform conclusions, primarily because of a lack of consistent and analogous performance evaluation methods. This paper aims to fill this gap by providing a standard set of metrics and measurement boundaries to consistently evaluate the performance of AC, DC, or hybrid AC/DC electrical distribution systems. The efficacy of the proposed approach is evaluated on a representative medium-sized commercial office building model with AC distribution and an equivalent hybrid AC/DC and DC distribution model, wherein the AC distribution model is concluded to be the most efficient. The simulation results show variation in computed metrics with different selected boundaries that verify the effectiveness of the proposed approach in ensuring consistent computation of the performance of building-level electrical distribution systems. This paper provides an initial set of guidelines for building energy system stakeholders to adopt appropriate solutions, thus leading to more efficient energy systems.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献