Effective Condensing Dehumidification in a Rotary-Spray Honey Dehydrator

Author:

Morawski MarcinORCID,Malec Marcin,Niezgoda-Żelasko BeataORCID

Abstract

This paper presents a mathematical model of the heat and mass transfer processes for a rotary-spray honey dehydrator with a heat pump and a closed air circuit. An analytical calculation model, based on the energy balance equations of the dehydrator and heat pump, was used to model the transient dehydration process of honey in a dehydrator. The presented article includes a different approach to modelling both the dryer and the heat pump assisting the drying process. The novel quality of this study lies in the use of original equations to determine the heat and mass transfer coefficients between honey and air and using an actual model of a cooling unit to model the honey dehydration process. The experimentally verified calculation algorithm enables an analysis of the effects of air flow rate, mixer rotation speed, and cooling unit power on the efficiency of the drying process. The dehydrator calculation model was used to minimize the drying time by selecting the optimal evaporative temperature values of the cooling unit. For fixed mixer speed and air flow rates, optimal values of evaporation temperatures allow for 8–13% reduction in honey drying time and an increase in the specific moisture extraction rate (SMER) by 4–32%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Properties of Dried and Intermediate Moisture Honey Products: A Review

2. Honey moisture reduction and its quality

3. Types, Classification and Selection of Dryers in Agro Industry;Zlatanović;Sci. J. Agric. Eng.,2012

4. Reduction of excess moisture in honey-I, a small scale unit;Wakhle;Indian Bee J.,1988

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3