The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques

Author:

Mądziel MaksymilianORCID,Jaworski ArturORCID,Kuszewski HubertORCID,Woś Paweł,Campisi TizianaORCID,Lew Krzysztof

Abstract

Road transport contributes to almost a quarter of carbon dioxide emissions in the EU. To analyze the exhaust emissions generated by vehicle flows, it is necessary to use specialized emission models, because it is infeasible to equip all vehicles on the road in the tested road sections with the Portable Emission Measurement System (PEMS). However, the currently used emission models may be inadequate to the investigated vehicle structure or may not be accurate due to the used macroscale. This state of affairs is especially related to full hybrid vehicles, since there are none of the microscale emission models that give estimated emissions values exclusively for this kind of drive system. Several automakers over the past decade have invested in hybrid vehicles with great opportunities to reduce costs through better design, learning, and economies of scale. In this work, the authors propose a methodology for creating a CO2 emission model, which takes relatively little computational time, and the models created give viable results for full hybrid vehicles. The creation of an emission model is based on the review of the accuracy results of methods, such as linear, robust regression, fine, medium, coarse tree, linear, cubic support vector machine (SVM), bagged trees, Gaussian process regression (GPR), and neural network (NNET). Particularly in the work, the best fit for the road input data for the CO2 emission model creation was the GPR method. PEMS data was used, as well as model training data and model validation. The model resulting from this methodology can be used for the analysis of emissions from simulation tests, or they can be used for input parameters for speed, acceleration, and road gradient.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3