Abstract
Among the solutions that make it possible to reduce CO2 emissions in the transport sector, particularly in urban traffic conditions, are hybrid vehicles. The share of driving performed in electric mode for hybrid vehicles is highly dependent on motion resistance. There are different methods for determining the motion resistance function during chassis dynamometer testing, leading to different test results. Therefore, the main objective of this study was to determine the effect of the chassis dynamometer load function on the energy demand and CO2 emissions of a full-hybrid passenger car. Emissions tests according to the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer for three different methods of determining the car’s resistance to motion. The study showed that adopting the motion resistance function according to different methods, results in differences in CO2 emissions up to about 35% for the entire cycle. Therefore, the authors suggest that in the case of tests carried out with chassis dynamometers, it is necessary to also provide information on the chassis dynamometer loading function adopted for the tests.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献