Abstract
Microbes can mediate the precipitation of primary dolomite under surface conditions. Meanwhile, primary dolomite mediated by microbes often contains more Fe2+ than standard dolomite in modern microbial culture experiments. Ferroan dolomite and ankerite have been regarded as secondary products. This paper reviews the process and possible mechanisms of microbial mediated precipitation of primary ferroan dolomite and/or ankerite. In the microbial geochemical Fe cycle, many dissimilatory iron-reducing bacteria (DIRB), sulfate-reducing bacteria (SRB), and methanogens can reduce Fe3+ to Fe2+, while SRB and methanogens can also promote the precipitation of primary dolomite. There are an oxygen respiration zone (ORZ), an iron reduction zone (IRZ), a sulfate reduction zone (SRZ), and a methanogenesis zone (MZ) from top to bottom in the muddy sediment diagenesis zone. DIRB in IRZ provide the lower section with Fe2+, which composes many enzymes and proteins to participate in metabolic processes of SRB and methanogens. Lastly, heterogeneous nucleation of ferroan dolomite on extracellular polymeric substances (EPS) and cell surfaces is mediated by SRB and methanogens. Exploring the origin of microbial ferroan dolomite may help to solve the “dolomite problem”.
Funder
National Natural Science Foundation of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献