Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro

Author:

Schlattl Maria,Buffler Marzell,Windisch WilhelmORCID

Abstract

Ruminants ingest large quantities of clay minerals along with inorganic soil constituents in roughages. The layered structure of clay minerals, however, may adsorb cations and may, thus, interfere with the ruminants’ supply of essential trace metals, such as Zn, Mn, Cu, and Fe. As quantitative knowledge about interactions between clay ingestion and essential trace metal metabolism are largely lacking, this in vitro study focussed on the effect of clay on the solubility of dietary Zn and other bivalent trace metals in the digestive tract of ruminants. Therefore, buffered rumen fluid was used for the simulation of ruminal conditions (RC), acidified rumen fluid (pH 2) was used for abomasal conditions (AC), and duodenal chyme was used for duodenal conditions (DC). These media were added with gradient levels of zinc and incubated at 39 °C for 24 h in the absence or presence of clay minerals. Soluble Zn, Cu, Mn, and Fe were derived by centrifugation (10,000× g) of incubated media, and the supernatants were analysed. Clay depressed the solubility of added Zn in ruminal (65.3% vs. 16.5%), abomasal (97.7% vs. 33.7%), and duodenal conditions (41.3% vs. 21.1%), the results of which were statistically significant (p < 0.001). Moreover, clay reduced dissolved Cu (µg/mL) (RC: 0.13 vs. 0.10; AC: 0.16 vs. 0.13; DC: 0.10 vs. 0.08) and Mn (µg/mL) (RC: 3.00 vs. 1.80; AC: 5.53 vs. 4.80; DC: 3.18 vs. 1.77) (p < 0.05 in all cases). The presence of clay minerals increased the concentrations of solubilised Fe (µg/mL) in abomasal (1.80 vs. 2.86, p < 0.05) and duodenal conditions (1.76 vs. 2.67; p < 0.05). In total, the present in vitro study demonstrates the potential of clay minerals ingested with ruminant feeds for depressing the solubility of dietary Zn, as well as the depression of dietary Cu and Mn along the passage of the digesta from the rumen until the duodenum. Additionally, clay minerals may release Fe into the digesta.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference37 articles.

1. Ziele in der Wiederkäuerfütterung;Spiekers,2011

2. Dreck Macht Nicht Fett—Verschmutzung bei Grassilagehttps://lazbw.landwirtschaft-bw.de/pb/site/pbs-bw-new/get/documents/MLR.LEL/PB5Documents/lazbw_2017/lazbw_gl/Gr%C3%BCnlandwirtschaft_und_Futterbau/Futterkonservierung/Hinweise%20zum%20Siliermanagement/Dokumente_Siliermanagement/2007_GL_nussbaum_verschmutzung_grassilage.pdf?attachment=true

3. Challenges in silage production with regard to soil contamination;Resch,2015

4. Feedstuff-dirtying of grass-silage of Austrian farms;Stögmüller,2014

5. Soil intake of lactating dairy cows in intensive strip grazing systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3