Strain Transfer Function of Distributed Optical Fiber Sensors and Back-Calculation of the Base Strain Field

Author:

Yoon SangyoungORCID,Yu Meadeum,Kim EunhoORCID,Yu JaesangORCID

Abstract

Distributed optical fiber sensors are a promising technology for monitoring the structural health of large-scale structures. The fiber sensors are usually coated with nonfragile materials to protect the sensor and are bonded onto the structure using adhesive materials. However, local deformation of the relatively soft coating and adhesive layers hinders strain transfer from the base structure to the optical fiber sensor, which reduces and distorts its strain distribution. In this study, we analytically derive a strain transfer function in terms of strain periods, which enables us to understand how the strain reduces and is distorted in the optical fiber depending on the variation of the strain field. We also propose a method for back-calculating the base structure’s strain field using the reduced and distorted strain distribution in the optical fiber sensor. We numerically demonstrate the back-calculation of the base strain using a composite beam model with an open hole and an attached distributed optical fiber sensor. The new strain transfer function and the proposed back-calculation method can enhance the strain field estimation accuracy in using a distributed optical fiber sensor. This enables us to use a highly durable distributed optical fiber sensor with thick protective layers in precision measurement.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3