Simulation of the Attrition of Recycled Concrete Aggregates during Concrete Mixing

Author:

Moreno-Juez JaimeORCID,Tavares Luís MarceloORCID,Artoni RiccardoORCID,Carvalho Rodrigo M. deORCID,da Cunha Emerson Reikdal,Cazacliu BogdanORCID

Abstract

Concrete mixing can lead to mechanical degradation of aggregates, particularly when dealing with recycled concrete aggregates. In this work, the attrition of such materials during mixing is studied by means of experiments and simulations. The effect of the presence of fines, water addition, flow configuration of the mixer (co- or counter-current) and impeller frequency is discussed. Experiments were performed in a laboratory Eirich mixer. Discrete element numerical simulations (DEM) were performed on the same geometry by mimicking the behaviour of the material and, in particular, the cohesion induced by water and the cement paste using either Hertz–Mindlin or Hertz–Mindlin with Johnson–Kendall–Roberts (JKR) contact laws. The combination of the collision energy spectra extracted from the DEM simulations and an attrition model allowed the prediction of the mass loss due to attrition in 1-min experiments. Semi-quantitative agreement was observed between experiments and simulations, with a mean relative error of 26.4%. These showed that higher mass losses resulted from operation at the highest impeller speeds, co-current operation, and also with the wet aggregate. Mixing of the agglomerate in the concrete mix resulted in a significant reduction in attrition when compared to mixing aggregates alone. With further validation, the proposed simulation approach can become a valuable tool in the optimization of mixing by allowing the effects of material, machine and process variables to be studied on the mass loss due to attrition.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3