Artificial Neural Network-Based Failure Pressure Prediction of API 5L X80 Pipeline with Circumferentially Aligned Interacting Corrosion Defects Subjected to Combined Loadings

Author:

Vijaya Kumar Suria DeviORCID,Karuppanan Saravanan,Ovinis MarkORCID

Abstract

Conventional pipeline corrosion assessment methods produce conservative failure pressure predictions for pipes under the influence of both internal pressure and longitudinal compressive stress. Numerical approaches, on the other hand, are computationally expensive. This work provides an assessment method (empirical) for the failure pressure prediction of a high toughness corroded pipe subjected to combined loading, which is currently unavailable in the industry. Additionally, a correlation between the corrosion defect geometry, as well as longitudinal compressive stress and the failure pressure of a pipe based on the developed method, is established. An artificial neural network (ANN) trained with failure pressure from FEA of an API 5L X80 pipe for varied defect spacings, depths, defect lengths, and longitudinal compressive loads were used to develop the equation. With a coefficient of determination (R2) of 0.99, the proposed model was proven to be capable of producing accurate predictions when tested against arbitrary finite element models. The effects of defect spacing, length, and depth, and longitudinal compressive stress on the failure pressure of a corroded pipe with circumferentially interacting defects, were then investigated using the suggested model in a parametric analysis.

Funder

Yayasan Universiti Teknologi PETRONAS

Publisher

MDPI AG

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3