Feasibility Study on the Steel-Plastic Geogrid Instead of Wire Mesh for Bolt Mesh Supporting

Author:

Wang Qingbiao,Wang Dong,Li YueORCID,Liu Wenxia,Tian Chenglin,Shi ZhenyueORCID,Wang Keyong,Song Hongxu,Hu Zhongjing,Zhang Xu,Liang Xunmei,Tang Fei,Tang Xingquan,Liu Zhengyin,Zhang Mingjing

Abstract

Wire mesh is a common material for bolt mesh supporting structures, but its application in engineering has revealed many defects. At the same time, with the development of new materials for civil engineering, the new material mesh performance and cost show outstanding advantages over wire mesh. In this paper, the feasibility of replacing wire mesh with steel-plastic geogrid as an alternative material is carefully studied through indoor tests and field applications. The following conclusions were drawn from a comparative analysis with wire mesh, mainly in terms of mechanical properties, engineering characteristics, and construction techniques: (1) in terms of mesh wire strength, wire mesh is slightly better than steel-plastic geogrid, but in the case of similar tensile strength, the amount of steel used per unit length of steel geogrid bars is only 36.75% of that of steel-plastic geogrid, while the tensile strength of the high-strength steel wire attached to the steel-plastic geogrid belt is about 3.3 times that of steel bars; (2) in terms of junction peel strength, both values are similar, with the injection-moulded junction being 1154.56–1224.38 N and the welded junction of 4 mm mesh being 988.35 N; (3) in terms of the strength of the mesh, steel-plastic geogrid is better than wire mesh, and with the same mesh wire strength, the bearing capacity of steel-plastic geogrid is increased by about 63.17% and the contribution of the mesh wire bearing capacity is increased by 83.66%, with the damage mainly being in the form of wire breakage in the ribbon causing ribbon failure, leading to further damage to the mesh; (4) in terms of the engineering application of steel-plastic geogrid compared to wire mesh, the utilization rate of mesh increases by about 24.99%, the construction efficiency increases by about 14.10%, and the economic benefit increases by about 45.31%. In practical application, the steel-plastic geogrid has good adhesion with surrounding rock and strong corrosion resistance. According to the above research analysis, the steel-plastic geogrid is feasible to replace the wire mesh for bolt mesh supporting.

Funder

National Natural Science Foundation of China

SDUST Research Fund

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. Case studies of rock bolting in coal mine roadways;Kang;Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng.,2010

2. Discrete element method and support vector machine applied to the analysis of steel mesh pinned by rockbolts

3. Investigation on support pattern of a coal mine roadway under dynamic pressure of mining - a case study

4. The life span and influencing factors of metal mesh in artificial soil on railway rock-cut slopes in humid areas

5. Experimental study on the effect of combined anchor support elements on reinforcement of steel mesh;Yuan;J. Coal Sci. Eng. (China),2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design an Efficient and Secure ECC-based Identity Authentication Scheme for Mesh Networks;Proceedings of the 6th International Conference on Information Technologies and Electrical Engineering;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3