Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction

Author:

Gao Junhua,Zhou Hao,Zhang FucanORCID,Ji Keming,Liu Ping,Liu Zenghou,Zhang Kan

Abstract

A kind of nano-ZSM-5 zeolite crystal was synthesized by the hydrothermal method, and HZSM-5 zeolite powder was obtained via acid exchange. By using pseudoboehmite as a binder, a series of HZSM-5 zeolite catalysts for methanol-to-hydrocarbons (MTH) were prepared through adjusting the binder content between 20 and 50% in addition to the molding method of wet extrusion and mechanical mixing. XRD, 27Al NMR, SEM-EDS, ICP, low-temperature N2 adsorption and desorption, NH3-TPD, Py-FTIR, FT-IR, TG and elemental analyses were used to characterize the properties of fresh catalysts and coke-deposited catalysts. Then, MTH catalytic performance was evaluated in a continuous-flow fixed-bed reactor. The characterization and evaluation results showed that the addition of dilute nitric acid during the molding process increased the amount of moderate-strength acid and formed a hierarchical pore distribution, which helped to reduce the reaction ability of cracking, aromatization and hydrogen transfer, improve the diffusion properties of the catalyst and slow down the coke deposition rate. The catalyst with a binder content of 30% made by wet extrusion with dilute nitric acid had the best performance, whose activity stability of MTH increased by 96 h, higher than other catalysts, and the coke deposition rate was slower, which was due to the most suitable distribution of acid strength and B/L ratio as well as the most obvious hierarchical pore structure.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3