Electrically Switchable Film Structure of Conjugated Polymer Composites

Author:

Awsiuk KamilORCID,Dąbczyński Paweł,Marzec Mateusz M.ORCID,Rysz JakubORCID,Moons EllenORCID,Budkowski AndrzejORCID

Abstract

Domains rich in different blend components phase-separate during deposition, creating a film morphology that determines the performance of active layers in organic electronics. However, morphological control either relies on additional fabrication steps or is limited to a small region where an external interaction is applied. Here, we show that different semiconductor-insulator polymer composites can be rapidly dip-coated with the film structure electrically switched between distinct morphologies during deposition guided by the meniscus formed between the stationary barrier and horizontally drawn solid substrate. Reversible and repeatable changes between the morphologies used in devices, e.g., lateral morphologies and stratified layers of semiconductors and insulators, or between phase-inverted droplet-like structures are manifested only for one polarity of the voltage applied across the meniscus as a rectangular pulse. This phenomenon points to a novel mechanism, related to voltage-induced doping and the doping-dependent solubility of the conjugated polymer, equivalent to an increased semiconductor content that controls the composite morphologies. This is effective only for the positively polarized substrate rather than the barrier, as the former entrains the nearby lower part of the coating solution that forms the final composite film. The mechanism, applied to the pristine semiconductor solution, results in an increased semiconductor deposition and 40-times higher film conductance.

Funder

Polish Ministry of Science and Higher Education within the Iuventus Plus Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3