Parametric Optimization for Quality of Electric Discharge Machined Profile by Using Multi-Shape Electrode

Author:

Gillani FouziaORCID,Zahid Taiba,Bibi Sameena,Khan Rana Sami Ullah,Bhutta Muhammad RaheelORCID,Ghafoor UsmanORCID

Abstract

The electrical discharge machining (EDM) process is one of the most efficient non-conventional precise material removal processes. It is a smart process used to intricately shape hard metals by creating spark erosion in electroconductive materials. Sparking occurs in the gap between the tool and workpiece. This erosion removes the material from the workpiece by melting and vaporizing the metal in the presence of dielectric fluid. In recent years, EDM has evolved widely on the basis of its electrical and non-electrical parameters. Recent research has sought to investigate the optimal machining parameters for EDM in order to make intricate shapes with greater accuracy and better finishes. Every method employed in the EDM process has intended to enhance the capability of machining performance by adopting better working conditions and developing techniques to machine new materials with more refinement. This new research aims to optimize EDM’s electrical parameters on the basis of multi-shaped electrodes in order to obtain a good surface finish and high dimensional accuracy and to improve the post-machining hardness in order to improve the overall quality of the machined profile. The optimization of electrical parameters, i.e., spark voltage, current, pulse-on time and depth of cut, has been achieved by conducting the experimentation on die steel D2 with a specifically designed multi-shaped copper electrode. An experimental design is generated using a statistical tool, and actual machining is performed to observe the surface roughness, variations on the surface hardness and dimensional stability. A full factorial design of experiment (DOE) approach has been followed (as there are more than two process parameters) to prepare the samples via EDM. Regression analysis and analysis of variance (ANOVA) for the interpretation and optimization of results has been carried out using Minitab as a statistical tool. The validation of experimental findings with statistical ones confirms the significance of each operating parameter on the output parameters. Hence, the most optimized relationships were found and presented in the current study.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

1. Investigations on Tool Wear Rate of AISI D2 Die Steel in EDM Using Taguchi Methods;Kumar;Chem. Process Eng. Res.,2015

2. Current Research Trends in Electric Discharge Machining (EDM);Abulais;Int. J. Sci. Eng. Res.,2014

3. Optimization of Machining Parameters for EDM Operations Based on Central Composite Design and Desirability Approach;Das;Int. J. Adv. Sci. Eng.,2016

4. Material removal rate and electrode wear study on the EDM of silicon carbide

5. Working Principle and Performance of Wire Electrical Discharge Machining;Xu,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3