The Relationship between Hydrological Connectivity Changes Inside and Outside Biodiversity Hotspots and Its Implication for Sustainable Environmental Management

Author:

Bao Wenhui,Zeng Xingyu,Luo Chunyu,Zhang Hongqiang,Qu Yi,Xu Nan

Abstract

The conservation management of biodiversity hotspots is of vital significance for biological conservation. For wetlands, which are a special type of ecosystems that are based on water as their main medium, a decline in external hydrological connectivity often leads to wetland degradation inside biodiversity hotspots. In this context, the relationship between hydrological connectivity changes inside and outside hotspots is worth exploring. Based on the wetland biodiversity hotspots identified using systematic conservation planning, this study selected eight representative biodiversity hotspots with concentrated area. Integral index of connectivity, probability of connectivity (representing structural connectivity), and morphological spatial pattern analysis (representing functional connectivity) were used to analyze the hydrological connectivity changes inside various hotspots for 1995–2015. By taking the catchment area involved as the minimum basin perimeter, this study calculated the external hydrological connectivity changes of various hotspots during this period and analyzed the relationship between hydrological connectivity changes inside and outside of hotspots. The internal and external hydrological connectivity of wetland biodiversity hotspots were found to be significantly correlated. Moreover, the internal hydrological connectivity of hotspots not only declined with declining external structural connectivity, but also changed with the proportion of core wetlands, the proportion of edge wetlands, and the proportion of branch corridors. In addition, hotspots located at intersections of high-grade rivers were more significantly affected by climate change than by human activities and their hydrological connectivity increased with increasing rainfall. The internal hydrological connectivity of hotspots near low-grade rivers presented a declining trend, mainly because of human activities. This study clarified the relationship between internal and external hydrological connectivity of wetland biodiversity hotspots. Targeted internal and external control strategies are proposed, with the aim to offer references for the conservation of wetland biodiversity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3