Effect of Environmental Factors on Nitrite Nitrogen Absorption in Microalgae–Bacteria Consortia of Oocystis borgei and Rhodopseudomonas palustris

Author:

Ma Yukun1,Luo Zhishen1,Zhong Jiazhan1,Zhang Hanyi1,Huang Xianghu1,Li Changling1,Zhang Yulei12

Affiliation:

1. Department of Aquaculture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China

2. Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

The effects of temperature, salinity, and illumination on the nitrite uptake rate of the microalgae–bacteria consortia of Oocystis borgei and Rhodopseudomonas palustris were investigated. The absorption rates of nitrite and the contribution rate of each component in the consortia under different temperatures (15, 20, 25, 30, 35 °C), illuminations (0, 15, 25, 35, 45 μmol·m−2·s−1), and salinities (0, 5, 15, 25, 35‰) were determined by stable isotope labeling technique. The single and combined effects of three environmental factors on nitrite uptake by the microalgae–bacteria consortia were analyzed using single-factor and orthogonal experiments. The single-factor experiment showed that the microalgae–bacteria consortia could absorb nitrite efficiently when the temperature, salinity, and illumination were 20~30 °C, 0~15‰, and 25~45 μmol·m−2·s−1, respectively, with the highest absorption rates were 2.086, 3.058, and 2.319 μg∙g−1∙h−1, respectively. The orthogonal experiment showed that the most efficient environmental conditions for nitrite uptake were 30 °C, 5‰ salinity, 35 μmol·m−2·s−1 illumination, and the rate of nitrite uptake by the microalgae–bacteria consortia was 3.204 μg∙g−1∙h−1. The results showed that the nitrite uptake rate of the O. borgei–R. palustris consortia was most affected by temperature, followed by salinity, and least by illumination. Under the same conditions, the nitrite absorption capacity of the microalgae–bacteria consortia was greater than that of single bacteria or algae, and R. palustris played a major role in the nitrite absorption of the consortia. The O. borgei and R. palustris consortia still maintain high nitrite absorption efficiency when the environment changes greatly, which has broad application prospects in the regulation and improvement of water quality in shrimp culture.

Funder

Modern Seed Industry Park for Whiteleg Shrimp

Guangdong Ocean University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3