Oral Administration of Okara Soybean By-Product Attenuates Cognitive Impairment in a Mouse Model of Accelerated Aging

Author:

Corpuz Henry M.,Arimura Misa,Chawalitpong Supatta,Miyazaki Keiko,Sawaguchi Makoto,Nakamura Soichiro,Katayama ShigeruORCID

Abstract

The microbiota–gut–brain axis has attracted increasing attention in the last decade. Here, we investigated whether okara, a soybean by-product rich in dietary fiber, can attenuate cognitive impairment in senescence-accelerated mouse prone 8 (SAMP8) mice by altering gut microbial composition. Mice were fed either a standard diet, or a diet containing okara (7.5% or 15%, w/w) for 26 weeks. In the memory test, the 7.5% okara-fed mice showed a longer step-through latency and the 15% okara-fed mice had a short escape latency compared with control mice. The 15% okara-fed mice displayed decreased body weight, increased fecal weight, and altered cecal microbiota composition compared with the control group; however, there was no significant difference in the serum lactic acid and butyric acid levels among these mice groups. The 7.5% okara-fed mice had significantly higher NeuN intensity in the hippocampus compared with control mice. Furthermore, a decrease in inflammatory cytokine TNF-α and an increase in brain-derived neurotrophic factor (BDNF) was observed in the 7.5% okara-fed group. The expression of synthesizing enzyme of acetylcholine was increased by the okara diets, and the acetylcholine level in the brain was higher in the 7.5% okara-fed group than in the control. These suggest that oral administration of okara could delay cognitive decline without drastically changing gut microbiota.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference39 articles.

1. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems;Carabotti;Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol.,2015

2. Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice

3. Understanding the Gut Microbiota in Inflammatory and Functional Gastrointestinal Diseases

4. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

5. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health;Appleton;Integr. Med.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3