Abstract
The microbiota–gut–brain axis has attracted increasing attention in the last decade. Here, we investigated whether okara, a soybean by-product rich in dietary fiber, can attenuate cognitive impairment in senescence-accelerated mouse prone 8 (SAMP8) mice by altering gut microbial composition. Mice were fed either a standard diet, or a diet containing okara (7.5% or 15%, w/w) for 26 weeks. In the memory test, the 7.5% okara-fed mice showed a longer step-through latency and the 15% okara-fed mice had a short escape latency compared with control mice. The 15% okara-fed mice displayed decreased body weight, increased fecal weight, and altered cecal microbiota composition compared with the control group; however, there was no significant difference in the serum lactic acid and butyric acid levels among these mice groups. The 7.5% okara-fed mice had significantly higher NeuN intensity in the hippocampus compared with control mice. Furthermore, a decrease in inflammatory cytokine TNF-α and an increase in brain-derived neurotrophic factor (BDNF) was observed in the 7.5% okara-fed group. The expression of synthesizing enzyme of acetylcholine was increased by the okara diets, and the acetylcholine level in the brain was higher in the 7.5% okara-fed group than in the control. These suggest that oral administration of okara could delay cognitive decline without drastically changing gut microbiota.
Subject
Food Science,Nutrition and Dietetics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献