Homogeneity Detection and Adjustment of Sea Surface Salinity along the Coast of the Northern South China Sea

Author:

Huang Jingyi1,You Dawei23,Li Yan1ORCID

Affiliation:

1. College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China

2. South China Sea Sea Area and Island Center, Ministry of Natural Resources, Guangzhou 510301, China

3. Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510301, China

Abstract

In this study, we applied the penalized maximum F test (PMF) method in the Relative Homogenization test V4 (RHtestV4) package without reference series to improve the reliability of monthly mean long-term sea surface salinity (SSS) data. The data were obtained from six coastal hydrological stations along the coast of the northern SCS, spanning from January 1960 to December 2018. Based on the detailed metadata, taking the influence of regional climate change factors into full account, the inhomogeneity of these SSS data was detected and adjusted. The findings indicate that all six coastal hydrological stations exhibited breakpoints, and among them, 22 breakpoints were identified in total, which were the causes of inhomogeneity in the monthly SSS time series. The primary factors contributing to these breakpoints were human-related and, specifically, related to changes in instruments. The average adjustment of monthly quantile matching (QM) of the salinity series ranged from around −4.25 to 3.33‰. The quality of the adjusted annual mean SSS time series was greatly improved. Notably, the annual mean SSS of the NZU and ZPO coastal hydrological stations in Guangdong Province exhibited a significant downward trend, indicating a trend of seawater freshening. Conversely, the WZU, BHI, HKO and QLN coastal hydrological stations in the Guangxi and Hainan coastal areas displayed an upward trend in SSS. This study fills the gap in current research on inhomogeneity detection and adjustment of SSS along the coast of the northern SCS. It also provides reliable and accurate first-hand information for research on climate change and marine science along the coast of the northern SCS.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3