Enhanced Spatio-Temporal Modeling for Rainfall Forecasting: A High-Resolution Grid Analysis

Author:

Alam Nurnabi Meherul1ORCID,Mitra Sabyasachi1ORCID,Pandey Surendra Kumar1,Jana Chayna2,Ray Mrinmoy3,Ghosh Sourav1ORCID,Paul Mazumdar Sonali1,Shankar S. Vishnu4ORCID,Saha Ritesh1ORCID,Kar Gouranga1

Affiliation:

1. ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata 700121, India

2. ICAR-Central Inland Fishery Research Institute, Barrackpore 700120, India

3. ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India

4. Department of PS & IT, Tamil Nadu Agricultural University, Coimbatore 641003, India

Abstract

Rainfall serves as a lifeline for crop cultivation in many agriculture-dependent countries including India. Being spatio-temporal data, the forecasting of rainfall becomes a more complex and tedious process. Application of conventional time series models and machine learning techniques will not be a suitable choice as they may not adequately account for the complex spatial and temporal dependencies integrated within the data. This demands some data-driven techniques that can handle the intrinsic patterns such as non-linearity, non-stationarity, and non-normality. Space–Time Autoregressive Moving Average (STARMA) models were highly known for its ability to capture both spatial and temporal dependencies, offering a comprehensive framework for analyzing complex datasets. Spatial Weight Matrix (SWM) developed by the STARMA model helps in integrating the spatial effects of the neighboring sites. The study employed a novel dataset consisting of annual rainfall measurements spanning over 50 (1970–2019) years from 119 different locations (grid of 0.25 × 0.25 degree resolution) of West Bengal, a state of India. These extensive datasets were split into testing and training groups that enable the better understanding of the rainfall patterns at a granular level. The study findings demonstrated a notable improvement in forecasting accuracy by the STARMA model that can exhibit promising implications for agricultural management and planning, particularly in regions vulnerable to climate variability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3