Piezo-Photocatalytic Degradation of Tetracycline by 3D BaTiO3 Nanomaterials: The Effect of Crystal Structure and Catalyst Loadings

Author:

Guo Qingqing1,Gao Ting1,Padervand Mohsen2,Du Diyuan1,Zhao Ke13,Zhang Yanqin1,Jia Tingting13,Wang Chuanyi1ORCID

Affiliation:

1. College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

2. Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh P.O Box 55181-83111, Iran

3. Key Laboratory of Environmental Monitoring and Pollutant Control, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China

Abstract

Piezoelectric photocatalysis improves catalytic activity by preventing photogenerated carrier recombination. Hence, three morphologies of BaTiO3 (BTO) were successfully prepared for the piezoelectric photocatalytic degradation of tetracycline (TC, C(TC) = 40 mg/L). The tetragonal-phase BaTiO3 nanoparticles (BTO-NPs) showed the best performance in comparison with cubic-phase nanoflowers (BTO-Nf) and cubic-phase coral-like structures (BTO-Nc) under the same conditions (C(BTO) = 0.6 g/L). When the loading of BTO-NPs was reduced to 0.2 g/L, the photocatalytic degradation efficiency was lowered from 64.2% to 50.1%. However, the 0.6 g/L BTO-NPs increased by only 12.8% after piezoelectricity induction. On the contrary, the BTO-NPs’ degradation effect of 0.2 g/L with the piezoelectric effect was greatly improved from 50.1% to 78.0%, with an increase rate of 27.9%. As the quantity of catalyst was decreased, the increased inter-particle voids made the lattice more susceptible to deformation by external forces, producing a more pronounced piezoelectric effect. These findings indicate that crystal structure and catalyst loading are critical factors in increasing piezoelectric photocatalytic performance. This article emphasizes the application value of piezoelectric photocatalysis in degrading organic pollutants, and provides practical guidelines for optimizing its performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3