A Novel Design of Centrifugal Pump Impeller for Hydropower Station Management Based on Multi-Objective Inverse Optimization

Author:

Zhang Yue1,Song Chenchen2ORCID

Affiliation:

1. College of Economics and Management, Beijing University of Technology, Beijing 100124, China

2. Higher Information Industry Technology Research Institute, Beijing Information Science and Technology University, Beijing 100192, China

Abstract

The impeller, regarded as the central component of a centrifugal pump, plays a pivotal role in dictating overall performance. Overcoming challenges arising from the complexity of design parameters and the time-intensive nature of the design process has been a persistent obstacle to widespread adoption. In this study, we integrated ANSYS-CFX 2023 software with innovative inverse design techniques to optimize the impeller design within a centrifugal pump system. Our investigation reveals groundbreaking insights, highlighting the significant influence of both blade load and shaft surface geometry on impeller performance. Notably, through load optimization, substantial enhancements in centrifugal pump efficiency were achieved, demonstrating improvements of 1.8% and 1.7% under flow conditions of 1.0 Q and 0.8 Q, respectively. Further, the efficiency gains of 0.44% and 0.36% were achieved in their corresponding flow conditions. The optimization of blade load and shaft surface configuration notably facilitated a more homogenized internal flow pattern within the impeller. These novel findings contribute substantively to the theoretical foundations underpinning centrifugal pump impeller design, offering engineers a valuable reference to elevate their performance. Our utilization of ANSYS-CFX software in conjunction with inverse design methodologies showcases a promising avenue for advancing impeller design, ultimately culminating in superior efficiency and performance for centrifugal pumps.

Funder

National Natural Science Foundation of China General Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3