Ultrasonic Vibration-assisted Electrochemical Discharge Machining of Quartz Wafer Micro-Hole Arrays

Author:

Yang Chun-Hao1ORCID,Wang Tai-Ching1,Hung Jung-Chou1ORCID,Tsui Hai-Ping1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan

Abstract

The micro-hole machining of quartz wafers depends on photolithography techniques akin to those used in semiconductor fabrication. These methods present challenges due to high equipment setup costs, large space requirements, and environmental pollution risks. This research applies ultrasonic vibration assistance in electrochemical discharge machining to create an array of micro-holes on quartz wafers. In the experiments, a self-prepared tungsten carbide micro-electrode array served as the tool electrode. This electrode was a 2 × 2 square array, with needles measuring 30 × 30 μm. A series of experiments was conducted to investigate the effects of various machining parameters, including working voltage, feed rate, duration time, duty factor, and ultrasonic power level, on the characteristics of the micro-hole array. The characteristics included average hole diameter and through-hole surface morphology. The experimental objective was to achieve a through-hole diameter of 80 μm with an accuracy of ±8 μm. During the electrochemical discharge machining, suitable ultrasonic vibrations can thin the insulating gas film coating on the electrode surface, resulting in a more uniform gas film. As the insulating gas film’s thickness decreased, so did the critical voltage needed for the electrochemical discharge machining, reducing the hole’s diameter expansion. The ultrasonic vibration assistance can enable the satisfaction of the dimensional accuracy requirement. The experimental results indicate that ultrasonic vibration assistance can effectively improve the processing capacity and reduce sample fragmentation. A working voltage of 44 V, feed rate of 1 μm/6 s, duration time of 30 μs, duty factor of 30%, and ultrasonic power level of 1 resulted in better inlet and outlet surface morphology without outlet fragmentation. Moreover, the average diameters of the inlet and outlet were roughly 80 μm while meeting the through-hole diameter of 80 μm with accuracy of ±8 μm.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3