Quality Assessment of a Novel Camera-Based Measurement System for Roughness Determination of Concrete Surfaces—Accuracy Evaluation and Validation

Author:

Özcan BarışORCID,Blankenbach JörgORCID

Abstract

The roughness of a surface is a decisive parameter of a material. In rehabilitation of concrete structures, for example, it significantly affects the adhesion between the coating material and the base concrete. However, the standard measurement procedure in construction suffers from considerable disadvantages, which leads to the demand for more sophisticated methods. In a research project, we, therefore, developed a novel camera-based measurement system, which is customized to meet the prevailing requirements for practical use on construction sites. In this article, we provide an overview of the measurement system and present comprehensive examinations to evaluate the accuracy and to provide evidence of validity. First, we examined the accuracy of the system by empirically assessing both trueness and precision of measurements using three concrete specimens. Trueness was determined by comparing the surface measurements to those of a highly accurate microscope system, revealing RMSE values of around 40–50 µm. Precision, on the other hand, was assessed considering the scattering of the roughness measurements under repeat conditions, which led to standard deviations of less than 6 µm. Furthermore, to proof validity, a comparative study was conducted based on sixteen concrete specimens, which includes the sand patch method and laser triangulation as established roughness measurement methods in practice. The empirically determined correlation coefficients between all three methods were greater than 0.99, indicating extraordinarily high linear relationships. Among them, the greatest correlation was between the camera-based system and laser triangulation.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3