A Novel Lightweight Anonymous Proxy Traffic Detection Method Based on Spatio-Temporal Features

Author:

He YanjieORCID,Li Wei

Abstract

Anonymous proxies are used by criminals for illegal network activities due to their anonymity, such as data theft and cyber attacks. Therefore, anonymous proxy traffic detection is very essential for network security. In recent years, detection based on deep learning has become a hot research topic, since deep learning can automatically extract and select traffic features. To make (heterogeneous) network traffic adapt to the homogeneous input of typical deep learning algorithms, a major branch of existing studies convert network traffic into images for detection. However, such studies are commonly subject to the limitation of large-sized image representation of network traffic, resulting in very large storage and computational resource overhead. To address this limitation, a novel method for anonymous proxy traffic detection is proposed. The method is one of the solutions to reduce storage and computational resource overhead. Specifically, it converts the sequences of the size and inter-arrival time of the first N packets of a flow into images, and then categorizes the converted images using the one-dimensional convolutional neural network. Both proprietary and public datasets are used to validate the proposed method. The experimental results show that the converted images of the method are at least 90% smaller than that of existing image-based deep learning methods. With substantially smaller image sizes, the method can still achieve F1 scores up to 98.51% in Shadowsocks traffic detection and 99.8% in VPN traffic detection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Generalization-Enhanced Method for Encrypted Proxy Traffic Identification Based on Autoencoder;2024 2nd International Conference On Mobile Internet, Cloud Computing and Information Security (MICCIS);2024-04-19

2. Cerberus: Efficient OSPS Traffic Identification through Multi-Task Learning;2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2023-11-01

3. A network traffic identification method based on AutoEncoder - a feature selection algorithm;Journal of Physics: Conference Series;2023-09-01

4. AE-DTI: An Efficient Darknet Traffic Identification Method Based on Autoencoder Improvement;Applied Sciences;2023-08-17

5. Tabular-to-Image Transformations for the Classification of Anonymous Network Traffic Using Deep Residual Networks;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3