SimTalk: Simulation of IoT Applications

Author:

Lin Yun-WeiORCID,Lin Yi-Bing,Yen Tai-Hsiang

Abstract

The correct implementation and behavior of Internet of Things (IoT) applications are seldom investigated in the literature. This paper shows how the simulation mechanism can be integrated well into an IoT application development platform for correct implementation and behavior investigation. We use an IoT application development platform called IoTtalk as an example to describe how the simulation mechanism called SimTalk can be built into this IoT platform. We first elaborate on how to implement the simulator for an input IoT device (a sensor). Then we describe how an output IoT device (an actuator) can be simulated by an animated simulator. We use a smart farm application to show how the simulated sensors are used for correct implementation. We use applications including interactive art (skeleton art and water dance) and the pendulum physics experiment as examples to illustrate how IoT application behavior investigation can be achieved in SimTalk. As the main outcome of this paper, the SimTalk simulation codes can be directly reused for real IoT applications. Furthermore, SimTalk is integrated well with an IoT application verification tool in order to formally verify the IoT application configuration. Such features have not been found in any IoT simulators in the world.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Economic Affairs, Taiwan

Ministry of Education, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Building Control: An Android Application for Enhanced Monitoring and Management in the Internet of Things Era;Procedia Computer Science;2024

2. A Monitoring Framework for Smart Building Facilities Management;Advances in Intelligent Systems and Computing;2024

3. A DEVS-Based Methodology for Simulation and Model-Driven Development of IoT;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Moving from Cloud to Fog/Edge: The Smart Agriculture Experience;IEEE Communications Magazine;2023-12

5. Use of a Software Application to Generate a Sequence for Simulation Model Creation;Applied Sciences;2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3