Evaluation of a Numerical, Real-Time Ultrasound Imaging Model for the Prediction of Litter Size in Pregnant Sows, with Machine Learning

Author:

Kousenidis Konstantinos,Kirtsanis Georgios,Karageorgiou Efstathia,Tsiokos Dimitrios

Abstract

The present study aimed to evaluate the accuracy of a numerical model, quantifying real-time ultrasonographic (RTU) images of pregnant sows, to predict litter size. The time of the test with the least error was also considered. A number of 4165 pregnancies in Farm 1 and 438 in Farm 2 were diagnosed twice, with the quality of the RTU images translated into rated-scale values (RSV1 and RSV2). When a deep neural network (DNN) was trained, the evaluation of the method showed that the prediction of litter size can be performed with little error. Root square mean error (RMSE) for training, validation with data from Farm 1, and testing on the data from Farm 2 were 0.91, 0.97, and 1.05, respectively. Corresponding mean absolute errors (MAE) were 2.27, 2.41, and 2.58. Time appeared to be a critical factor for the accuracy of the model. The smallest MAE was achieved when the RTU was performed at days 20–22. It is concluded that a numerical, RTU imaging model is a prominent predictor of litter size, when a DNN is used. Therefore, early routinely evaluated RTU images of pregnant sows can predict litter size, with machine learning, in an automated manner and provide a useful tool for the efficient management of pregnant sows.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference33 articles.

1. Highlights on Artificial Insemination (AI) Technology in the Pigs

2. Pregnancy Diagnosis by Real-Time Ultrasonograpy at Different Gestational Periods in Gilts and Sows;Stančić;Sci. Pap. Anim. Sci. Biotechnol.,2012

3. Pregnancy Diagnosis in Swine;Flowers;Pork Inf. Gatew.,2006

4. Reproduction;Ashworth,2006

5. Accuracy of pregnancy diagnosis in swine by ultrasonography;Williams;Can. Vet. J.,2008

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3