Dry Deposition in Urban Green Spaces: Insights from Beijing and Shanghai

Author:

Peng Hao1,Shao Siqi1,Xu Feifei1,Dong Wen1,Qiu Yingying1,Qin Man1,Ma Danping2,Shi Yan3,Chen Jian1,Zhou Tianhuan4,Ren Yuan1

Affiliation:

1. State Key Lab of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

2. Engineering Experimental Training Center, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

3. College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China

4. Zhejiang Forest Resources Monitoring Center, Hangzhou 310020, China

Abstract

Urbanization and industrialization have escalated air pollution into a critical global issue, particularly in urban areas. Urban green infrastructures (GIs), such as parks and street trees, play a vital role in mitigating air pollution through dry deposition, the process by which air pollutants are removed by deposition onto plant surfaces or through plant uptake. However, existing studies on the dry-deposition capacity of urban green spaces are limited in their ability to reflect variations at the tree-species level, hindering comprehensive evaluations and effective management strategies. This study aims to quantitatively assess the dry-deposition capacity of the urban green spaces of Beijing and Shanghai for six major air pollutants in using an improved dry-deposition model and tree-species-specific data. Results showed that Shanghai’s urban green spaces had a monthly average dry-deposition rate of 5.5 × 10−6 s m−1, slightly higher than Beijing’s rate of 5.3 × 10−6 s m−1. Significant seasonal variations were observed, with summer showing the highest deposition rates due to favorable meteorological conditions. Broad-leaved species such as Zelkova serrata in Beijing and Photinia serratifolia in Shanghai exhibited superior dry-deposition capacities compared to coniferous species. Temperature significantly influenced dry-deposition rates for gaseous pollutants, while particulate-matter deposition was primarily affected by pollutant concentrations. This study provides critical insights into the air = purification functions of urban green spaces and underscores the importance of species selection and strategic green-space planning in urban air-quality management, informing the development of optimized urban-greening strategies for improved air quality and public health.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Key Research and Development Program of China

National Natural Science Foundation of China

Demonstration of rapid restoration and ecological benefit evaluation technology of damaged forest ecosystem in Zhejiang Province

Publisher

MDPI AG

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3