Author:
Liu Zhi,Zhang Li,Zhao Lanhao,Wu Zihan,Guo Bowen
Abstract
A novel damage model for concrete has been developed, which can reflect the complex hysteresis phenomena of concrete under cyclic loading, as well as other nonlinear behaviors such as stress softening, stiffness degradation, and irreversible deformation. The model cleverly transforms the complex multiaxial stress state into a uniaxial state by equivalent strain, with few computational parameters and simple mathematical expression. The uniaxial tensile and compressive stress–strain curves matching the actual characteristics are used to accommodate the high asymmetry of concrete in tension and compression, respectively. Meanwhile, an unloading path and a reloading path that can reflect the hysteresis effect under cyclic loading of concrete are established, in which the adopted expressions for the loading and unloading characteristic points do not depend on the shape of the curve. The proposed model has a concise form that can be easily implemented and also shows strong generality and flexibility. Finally, the reliability and correctness of the model are verified by comparing the numerical results with the three-point bending beam test, cyclic loading test, and a seismic damage simulation of the Koyna gravity dam.
Funder
Natural Science Fund project in Jiangxi province
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献