Selective Oxidation of Cellulose—A Multitask Platform with Significant Environmental Impact

Author:

Duceac Ioana A.,Tanasa Fulga,Coseri SergiuORCID

Abstract

Raw cellulose, or even agro-industrial waste, have been extensively used for environmental applications, namely industrial water decontamination, due to their effectiveness, availability, and low production cost. This was a response to the increasing societal demand for fresh water, which made the purification of wastewater one of the major research issue for both academic and industrial R&D communities. Cellulose has undergone various derivatization reactions in order to change the cellulose surface charge density, a prerequisite condition to delaminate fibers down to nanometric fibrils through a low-energy process, and to obtain products with various structures and properties able to undergo further processing. Selective oxidation of cellulose, one of the most important methods of chemical modification, turned out to be a multitask platform to obtain new high-performance, versatile, cellulose-based materials, with many other applications aside from the environmental ones: in biomedical engineering and healthcare, energy storage, barrier and sensing applications, food packaging, etc. Various methods of selective oxidation have been studied, but among these, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (TEMPO)-mediated and periodate oxidation reactions have attracted more interest due to their enhanced regioselectivity, high yield and degree of substitution, mild conditions, and the possibility to further process the selectively oxidized cellulose into new materials with more complex formulations. This study systematically presents the main methods commonly used for the selective oxidation of cellulose and provides a survey of the most recent reports on the environmental applications of oxidized cellulose, such as the removal of heavy metals, dyes, and other organic pollutants from the wastewater.

Funder

Ministry of Research and Innovation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3