Research on the True Triaxial Mechanical Properties of Concrete under the Coupling Action of High Temperature and Biaxial Unequal Lateral Pressure

Author:

Ren Biao,Wang Tengjiao,Xu Jinyu,Wang ZhihangORCID,Lv Yan,Ning Yipeng

Abstract

Based on engineering practice and practical needs, this paper takes ordinary concrete specimens as the research object, and adopts a high-temperature true triaxial loading test system to carry out high-temperature uniaxial and true triaxial static compression tests of concrete under high-temperature conditions. By comparing with normal temperature conditions, this paper analyzes the influence of the coupling effect of high-temperature and biaxial unequal lateral pressure on the static mechanical properties of concrete. By analyzing the experimental data, we reached a series of conclusions and carried out theoretical research on this basis. High temperatures can significantly affect the uniaxial static pressure strength characteristics, deformation characteristics, and failure mode of concrete. When the temperature exceeds 400 °C, the compressive strength decreases significantly, the peak strain increases sharply, and the plasticity of concrete is further enhanced. The coupling effect of high-temperature deterioration and lateral pressure strengthening makes the true triaxial mechanical properties of concrete change significantly; 0.6:0.2 and 400 °C are the turning points of side pressure ratio and temperature that affect the change law of the true triaxial mechanical properties of concrete, respectively. Based on the study of the high-temperature deterioration factor and lateral pressure strengthening factor, this paper further puts forward a concrete strength formula under the coupling action of high temperature and biaxial unequal lateral pressure. It was verified that the formula has a high accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Development and Prospect of concrete technology;Changwen;Silic. Bull.,2020

2. Numerical simulation of dynamic response analysis of reinforced concrete slab strengthened with CFRP under explosion impact;Ruilin;J. Railw. Sci. Eng.,2020

3. Test and Simulation of dynamic stress wave in concrete under explosion impact;Prot. Eng.,2020

4. K & C model of steel fiber reinforced concrete slab under impact and explosion load;J. High Press. Phys.,2020

5. Experimental study on mechanical properties of high strength concrete after high temperature;Bo;Civ. Eng. J.,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3