Experimental Prognostication of Ultra-High-Performance Lightweight Hybrid Fiber-Reinforced Concrete by Using Sintered Fly Ash Aggregate, Palm Oil Shell Aggregate, and Supplementary Cementitious Materials

Author:

Behera Diptikar,Liu Kuang-YenORCID,Gopalakrishnan DineshkumarORCID

Abstract

To create cost-effective structures, the modern construction industry has sought to reduce the dead load of buildings. Lightweight concrete is a quick way to reduce dead load. The current study is primarily concerned with identifying modern substitutes for coarse aggregate likely to aid in waste management and offer potential alternatives to the most exploited natural resources. According to ACI C 39-M, this study developed a novel lightweight hybrid fiber-reinforced concrete (LWHFRC) with a density of less than 1825 kg/m3 and compressive strength of 50 to 75 MPa. Ordinary Portland cement (53 Grade) was mixed with fly ash, silica fume, and GGBS. Sintered fly ash aggregate (SFA) and palm oil shell aggregate (POS) were used as coarse aggregates. Hooked steel fibers and polyvinyl alcohol fibers were combined in a hybrid form to improve crack propagation properties at the initial and subsequent stages. The water-to-binder ratio was kept constant at 0.30 to 0.35 with a 1% superplasticizer. Four volume fractions of hybrid fibers (both steel and PVA with Vf = 0%, 1%, 1.5%, and 2%) were added. In addition, XRD, SEM, EDS, and EDS mapping tests were performed to finalize the material’s chemical composition and crystalline structure. Furthermore, beams and cylinders were tested to determine the modulus of rupture, which was determined to be between 9.5 and 14 MPa by ACI code C 1609-M, and indirect tensile strength, achieved as 10 to 14 MPa by ACI code C 496-M. The researcher altered the modulus of elasticity (Ec) formula for lightweight concrete and discovered a relationship between fc’ and fcb, fc’ and fspt, and fcb and fspt. Finally, ANOVA and regression tests were run to check the significance of the experiment. The cost analysis revealed that the cost of LWHFRC increased by approximately 16.46%, while the strength increased by 55.98% compared to regular concrete.

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Phase characterizations, physical properties and strength of environment-friendly cold-bonded fly ash lightweight aggregates

2. Brief Study on Concrete Modified with Artificial Cold Bonded Pelletized Light Weight Fly Ash Aggregates;Sathyam;IOSR J. Eng.,2017

3. Performance of structural lightweight concrete produced by utilizing high volume of fly ash cenosphere and sintered fly ash aggregate with silica fume

4. An Experimental Investigation on Concrete by Partial Replacement of Cement by Fly Ash and Fine Aggregate by Quarry Dust

5. Investigating the effect of sintered fly ash aggregate on mechanical properties of concrete: A review;Hasani;Proceedings of the 13th National Congress on Civil Engineering,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3