A Study on the In-Plane Shear-after-Impact Properties of CFRP Composite Laminates

Author:

Liu LongquanORCID,Xu WenjunORCID

Abstract

Impact loading on carbon fiber reinforced polymer matrix (CFRP) composite laminates can result in a significant reduction in their residual properties, and the (ShAI) properties of the composite material are essential to obtain the material allowable values of the shear dominated composite structures. In order to obtain the ShAI properties of the composite material in pure shear stress at a coupon level, this study presents theoretical, experimental, and numerical methods and analysis work on the in-plane shear and ShAI properties of the composite laminates. Theoretically, a method of sizing the composite specimen loading in shear is developed through comparing the load values due to buckling and the material failure. Following this, both impact tests using the drop-weight method and ShAI tests using the picture frame test method are conducted, and the influences of the impact energies on the impact damage and the residual ShAI values are evaluated. Moreover, a progressive failure finite element model based on the Hashin’s failure criterion and the cohesive zone model is developed, and a two-step dynamic analysis method is performed to simulate the failure process of the composite laminates under impact loading and ShAI loading. It is found that the impact damage with the cut-off energy, 50 J, causes a 26.8% reduction in the residual strength and the residual effective shear failure strain is about 0.0132. The primary reason of the shear failure is the propagation of both the matrix tensile failure and interlaminar delamination. It can be concluded that the proposed theoretical, experimental, and numerical methods are promising factors to study the ShAI properties of the composite materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Damage and Fracture of Composite Materials and Structures;Saligheh,2012

2. Experimental investigation on the behaviour of CFRP laminated composites under impact and compression after impact (CAI);Lee;Proceedings of the EU-Korea Conference on Science and Technology,2018

3. FAR 25.571 Damage—Tolerance and Fatigue Evaluation of Structure;U.S. Department of Transportation—Federal Aviation Administration (FAA)

4. Advisory Circular 20-107B Subject: Composite Aircraft Structure;U.S. Department of Transportation—Federal Aviation Administration (FAA)

5. The impact resistance of composite materials — a review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3