Elastic Properties and Hardness of Mixed Alkaline Earth Silicate Oxynitride Glasses

Author:

Ali SharafatORCID

Abstract

The incorporation of nitrogen as a second anion species into oxide glasses offers unique opportunities for modifying glass properties via changes in glass polymerization and structure. In this work, the compositional dependence of elastic properties and the nanoindentation hardness of mixed alkaline-earth silicate oxynitride glasses containing a high amount of nitrogen (>15 at.%, c.a. 35 e/o) were investigated. Three series of silicon oxynitride glass compositions AE–Ca–Si–O–N glasses (where AE = Mg, Sr, and Ba) having varying amounts of modifiers were prepared using a new glass synthesis route, in which a precursor powder of metal hydrides was used. The obtained glasses contained high amounts of N (19 at.%, c.a. 43 e/o) and modifier cations (26 at.%, c.a. 39 e/o). Mg–Ca–Si–O–N glasses had high values of nanohardness (12–16 GPa), along with a reduced elastic modulus (130–153 GPa) and Young’s modulus (127–146 GPa), in comparison with the Sr–Ca- and Ba–Ca-bearing oxynitride glasses. Both the elastic modulus and the nanohardness of AE–Ca–Si–O–N glasses decreased with an increase in the atomic number of the AE element. These property changes followed a linear dependence on the effective cation field strength (ECFS) of the alkaline earth (AE) modifier, according to their valences and ionic radii. No mixed alkaline-earth effect was observed in the current investigation, indicating that the properties were more dictated by the nitrogen content.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3