Nonconventional 1,8-Diazafluoren-9-One Aggregates for Green Light Enhancement in Hybrid Biocompatible Media

Author:

Lewkowicz AnetaORCID,Pierpaoli MattiaORCID,Walczewska-Szewc Katarzyna,Czarnomska Martyna,Bojarski PiotrORCID,Bogdanowicz RobertORCID,Pogorzelski Stanisław,Kułak Leszek,Karczewski Jakub

Abstract

Organic aggregates currently play a prominent role, mainly for their unique optoelectronic properties in the aggregated state. Such properties can be related to the aggregates’ structure and the molecular packing mode. In the literature, we have well-established models of H and J aggregates defined based on the molecular exciton model. However, unconventional aggregates, the most unrecognized forms, have been generating interest among researchers recently. Within unconventional aggregation, aggregation-induced emission systems (AIE) are considered. In the present work, we discuss the effect of the forming of unconventional aggregation together with the change in dye concentration on the surface energy characteristics of the materials. All materials were prepared as hybrid biocompatible thin films where the matrix is TiO2 or TiO2/carbon nanowalls (CNWs) with the incorporated dye in the form of 1,8-diazafluoren-9-one (DFO). Using the time-resolved emission spectra and the determination of surface parameters from contact angle measurements, we indicated the correlation between the changes in such parameters and the concentration of DFO dye in two types of TiO2 and TiO2/CNW structures. To examine the propensity of DFO for aggregation, the internal energy of the dye was assessed in several aggregate structures using Quantum chemistry calculations. The results emphasize that DFO is an attractive structure in the design of new fluorophores due to its low molecular weight, the presence of a nitrogen atom that provides good coordination properties, and the ability to form hydrogen bonds. Our studies show that when using suitable matrices, i.e., rigid media, it forms the preferred forms of aggregates in the excited state, characterized by high emission efficiency in the band maximum of around 550 nm.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3