Numerical Assessment of a Two-Phase Model for Propulsive Pump Performance Prediction

Author:

Avanzi Filippo1ORCID,Baù Alberto1,De Vanna Francesco1ORCID,Benini Ernesto1ORCID

Affiliation:

1. Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy

Abstract

The present work provides a detailed numerical investigation of a turbopump for waterjet applications in cavitating conditions. In particular, the study focuses on the complexities of cavitation modelling, serving as a pivotal reference for future computational research, especially in off-design hydro-jet scenarios, and it aims to extend current model assessments of the existing methods, by disputing their standard formulations. Thus, a computational domain of a single rotor-stator blade passage is solved using steady-state Reynolds-Averaged Navier–Stokes equations, coupled with one-, two-, and four-equation turbulence models, and compared with available measurements, encompassing both nominal and thrust breakdown conditions. Through grid dependency analysis, a medium refinement with the Shear Stress Transport turbulence model is chosen as the optimal configuration, reducing either computational time and relative error in breakdown efficiency to 1%. This arrangement is coupled with a systematic study of the Zwart cavitation model parameters through multipliers ranging from 10−2 to 102. Results reveal that properly tuning these values allows for a more accurate reconstruction of the initial phases of cavitation up to breakdown. Notably, increasing the nucleation radius reduces the difference between the estimated head rise and experimental values near breakdown, reducing the maximum error by 4%. This variation constrains vapour concentration, promoting cavitation volume extension in the passage. A similar observation occurs when modifying the condensation coefficient, whereas altering the vaporization coefficient yields opposite effects.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3