DC-Bus Voltage Sensorless Control of an Active Rectifier with Modular Multilevel Converter

Author:

Pan Jianyu1,Du Yihao1,Ke Ziwei2

Affiliation:

1. School of Electrical Engineering, Chongqing University, Chongqing 400044, China

2. School of Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The modular multilevel converter (MMC) is recognized as one of the promising converters for the electrification of ships and railways. Among different energy conversion stages, the MMC-based rectifier should realize stable DC output voltage and accurate input current control. However, output DC-bus voltage sensors must be installed, which are costly and bulky. This paper presents a simple but effective control method for the MMC-based rectifier, removing the traditional output DC-bus voltage sensor. An accurate evaluation model of DC-bus voltage is developed as well as the implementing method. Meanwhile, a safe and fast pre-charging scheme is presented for the MMC-based rectifier without output voltage sensors. The fault-tolerant capability of the proposed method when the failure of the output DC-bus voltage sensor occurs is examined. Simulated and testing results demonstrate that the proposed method presents not only excellent steady-state and dynamic performance but also strong fault-tolerant capability. The proposed evaluation model for DC-bus voltage has a high accuracy with an error of less than 1%. Besides, the pre-charging time is less than 0.5 s using the proposed sensorless control.

Funder

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3