Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits

Author:

Naji Amar1,Rechdaoui Sabrina Guérin1,Jabagi Elise1,Lacroix Carlyne1,Azimi Sam1,Rocher Vincent1

Affiliation:

1. Direction d’Innovation, Service Public de L’assainissement Francilien (SIAAP), 82 Avenue Kléber, 92700 Colombes, France

Abstract

The effects of co-digesting sewage sludge (SS) and horse waste (HW), the composition of HW, and the ratio of HW:SS were studied using two semi-continuous digesters of 9.5 L of working volume. These digesters were operated in parallel with the mono-digestion of SS in digester 1 (D1) and the co-digestion of SS and HW in digester 2 (D2). In digester 2, there were two phases of digestion (durations of 40 and 43 weeks, respectively). The composition of HW in the first phase was 85% wheat straw (WS), 14% wood chips (WC), and 1% horse manure (HM), with 99% wheat straw (WS) and 1% horse manure (HM) in the second phase. Variable ratios of HW:SS were studied in the digesters. The co-digestion of sewage sludge (SS) and horse waste (HW) produced more biogas than the mono-digestion of SS alone, with a maximum of 15.8 L·d−1, compared to 9 L·d−1 at the end of the experiment. When comparing the results obtained in both phases, the production of methane in phase 2 was 18 NmL·gVS−1 higher than in phase 1. This slight increase in methane yield could be linked to the absence of wood chips (WC), which is considered to have a diluting effect on methane production. Therefore, this study shows that an organic loading rate (OLR) of 4.8 kgVS·m−3·d−1, a ratio of HW:SS of 3, and a composition of HW (99% WS, 1% HM) should be respected in the actual experimental conditions for a well-functioning anaerobic digestion.

Funder

SIAAP

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3