Piezoelectric Energy Harvester for Harnessing Rotational Kinetic Energy through Linear Energy Conversion

Author:

Abdulkhaliq Habib Sadiq1,Crawley Fergus1,Luk Patrick1ORCID,Luo Zhenhua1ORCID

Affiliation:

1. Centre for Energy Engineering, Cranfield University, Cranfield MK43 0AL, UK

Abstract

Real-time condition monitoring of various types of machinery using sensor technology has gained significant importance in recent years. However, relying on batteries to power these sensors proves to be sub-optimal, as it necessitates regular charging or replacement. To address this, harvesting waste energy from ambient sources emerges as a more efficient alternative. Everyday applications like vehicle wheels, fans, and turbines present ambient sources of waste rotational energy. In this study, we propose a novel rotational energy harvester design that converts rotational energy into linear energy. This linear energy impacts a piezoelectric disk, generating an electric potential. Through simulations, the expected electric potential at varying frequencies was evaluated. Subsequently, experimental tests were conducted by connecting the harvester to a rectifier for AC-to-DC signal conversion and an oscilloscope for voltage measurement. A DC motor replicated the rotational motion at the frequencies from the simulation, and the power output was measured. Using the power transfer theorem, simulation and experimental power outputs were calculated, resulting in values of 188, 513, and 1293 μW and 88.89, 336, and 923 μW, respectively. These results reveal that the designed harvester is competitive with those of existing rotational energy harvester designs, demonstrating the promising potential of this novel harvester.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3