Process Integration Approach to the Methanol (MeOH) Production Variability from Syngas and Industrial Waste Gases

Author:

Yousuf Abu12,Hossain Md Shahadat13ORCID,Paul Nishat1,Shikder Md Woashib1,Kumar Deepak3ORCID,Pirozzi Domenico4ORCID,Sakib Ahmed Nazmus2,Kazempoor Pejman2

Affiliation:

1. Department of Chemical Engineering & Polymer Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh

2. Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA

3. Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA

4. Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy

Abstract

Methanol is expected to be a possible solution for reducing global greenhouse gas emissions and minimizing the dependency on fossil fuels. This paper presents a systematic approach of methanol (MeOH) production from industrial waste gases including flue gas (FG) and coke oven gas (COG) that are considered an important threat to the environment. The impact of process parameters, including dimensional parameters (length, diameter, and number of tubes) and operational parameters (reactor temperature, pressure, and thermal fluid temperature) over the MeOH synthesis, are investigated by Aspen Plus. Firstly, the synthesis process is designed and optimized using syngas (SG) as a feed material. Secondly, by replacing the feed material with FG and COG, methanol production variability is investigated and demonstrated for the same optimized process. Afterward, an efficient heat exchange network system is developed for all three different processes using Aspen Energy Analyzer. The optimized dimensional parameters of the MeOH synthesis reactor are determined to be a length of 12 m, a diameter of 0.06 m, and 5000 tubes for achieving a conversion rate of 75%. Meanwhile, the optimized operational parameters are identified as a reactor temperature of 209 °C, reactor pressure of 70 bar, and thermal fluid temperature of 196 °C. Furthermore, the influence of the stoichiometric number (SN) on the process was observed with higher SN values resulting in increased hydrogen (H2) concentration and an improved forward reaction of MeOH synthesis, leading to higher conversion rates. The findings and insights gained from this study can serve further improvements and advancements in MeOH synthesis processes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3