Measuring Tree Height with Remote Sensing—A Comparison of Photogrammetric and LiDAR Data with Different Field Measurements

Author:

Ganz Selina,Käber YannekORCID,Adler Petra

Abstract

We contribute to a better understanding of different remote sensing techniques for tree height estimation by comparing several techniques to both direct and indirect field measurements. From these comparisons, factors influencing the accuracy of reliable tree height measurements were identified. Different remote sensing methods were applied on the same test site, varying the factors sensor type, platform, and flight parameters. We implemented light detection and ranging (LiDAR) and photogrammetric aerial images received from unmanned aerial vehicles (UAV), gyrocopter, and aircraft. Field measurements were carried out indirectly using a Vertex clinometer and directly after felling using a tape measure on tree trunks. Indirect measurements resulted in an RMSE of 1.02 m and tend to underestimate tree height with a systematic error of −0.66 m. For the derivation of tree height, the results varied from an RMSE of 0.36 m for UAV-LiDAR data to 2.89 m for photogrammetric data acquired by an aircraft. Measurements derived from LiDAR data resulted in higher tree heights, while measurements from photogrammetric data tended to be lower than field measurements. When absolute orientation was appropriate, measurements from UAV-Camera were as reliable as those from UAV-LiDAR. With low flight altitudes, small camera lens angles, and an accurate orientation, higher accuracies for the estimation of individual tree heights could be achieved. The study showed that remote sensing measurements of tree height can be more accurate than traditional triangulation techniques if the aforementioned conditions are fulfilled.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3