A Geospatial Decision Support System Tool for Supporting Integrated Forest Knowledge at the Landscape Scale

Author:

Marano ,Langella ,Basile ,Cona ,Michele ,Manna ,Teobaldelli ,Saracino ,Terribile

Abstract

Forests are part of a complex landscape mosaic and play a crucial role for people living both in rural and urbanized spaces. Recent progresses in modelling and Decision Support System (DSS) applied to the forestry sector promise to improve public participative forest management and decision-making in planning and conservation issues. However, most DSS are not open-source systems, being in many cases software designed for site-specific applications in forest ecosystems. Furthermore, some of these systems often miss challenging the integration of other land uses within the landscape matrix, which is a key issue in modern forestry planning aiming at linking recent developments in open-source Spatial-DSS systems to sectorial forest knowledge. This paper aims at demonstrating that a new type of S-DSS, developed within the Life+ project SOILCONSWEB over an open-source Geospatial Cyber-Infrastructure (GCI) platform, can provide a strategic web-based operational tool for forest resources management and multi-purpose planning. In order to perform simulation modelling, all accessible via the Web, the GCI platform supports acquisition and processing of both static and dynamic data (e.g., spatial distribution of soil and forest types, growing stock and yield), data visualization and computer on-the-fly applications. The DSS forestry tool has been applied to a forest area of 5,574 ha in the southern Apennines of Peninsular Italy, and it has been designed to address forest knowledge and management providing operational support to private forest owners and decision-makers involved in management of forest landscape at different levels. Such a geospatial S-DSS tool for supporting integrated forest knowledge at landscape represents a promising tool to implement sustainable forest management and planning. Results and output of the platform will be shown through a short selection of practical case studies.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3