The Relevance of Toxic AGEs (TAGE) Cytotoxicity to NASH Pathogenesis: A Mini-Review

Author:

Sakasai-Sakai Akiko,Takata TakanobuORCID,Takino Jun-ichi,Takeuchi Masayoshi

Abstract

Non-alcoholic fatty liver disease (NAFLD) is currently the most common feature of chronic liver disease. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD, and one of its risk factors is hyperglycemia. The chronic ingestion of excessive amounts of high-fructose corn syrup is associated with an increased prevalence of fatty liver. Under hyperglycemic conditions, advanced glycation end-products (AGEs) are generated through a non-enzymatic glycation reaction between the ketone or aldehyde groups of sugars and amino groups of proteins. Glyceraldehyde (GA) is a metabolic intermediate of sugars, and GA-derived AGEs (known as toxic AGEs (TAGE)) have been implicated in the development of NASH. TAGE accumulates more in serum or liver tissue in NASH patients than in healthy controls or patients with simple steatosis. Furthermore, the TAGE precursor, GA, causes cell damage through protein dysfunctions by TAGE modifications and induces necrotic-type hepatocyte death. Intracellular TAGE may leak outside of necrotic-type cells. Extracellular TAGE then induce inflammatory or fibrotic responses related to the pathology of NASH in surrounding cells, including hepatocytes and hepatic stellate cells. This review focuses on the contribution of TAGE to the pathology of NASH, particularly hepatic cell death related to NASH.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3