Abstract
Organoids offer a promising strategy for articular tissue regeneration, joint disease modeling, and development of precision medicine. In this study, two types of human stem cells—primary mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs)—were employed to engineer organoids that mimicked bone, cartilage and adipose tissue, three key tissue components in articular joints. Prior to organoidogenesis, the iPSCs were first induced into mesenchymal progenitor cells (iMPCs). After characterizing the MSCs and iMPCs, they were used to generate cell-embedded extracellular matrix (ECM) constructs, which then underwent self-aggregation and lineage-specific differentiation in different induction media. Hydroxyapatite nanorods, an osteoinductive bioceramic, were leveraged to generate bone and osteochondral organoids, which effectively enhanced mineralization. The phenotypes of the generated organoids were confirmed on the basis of gene expression profiling and histology. Our findings demonstrate the feasibility and potential of generating articular tissue-recapitulating organoids from MSCs and iPSCs.
Funder
Department of Orthopaedic Surgery at the University of Pittsburgh School of Medicine
Lee Quo Wei and Lee Yik Hoi Lun Professorship in Tissue Engineering and Regenerative Medicine of The Chinese University of Hong Kong
Centre for Neuromusculoskeletal Restorative Medicine of the InnoHK Cluster
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献