A Review on Heat Transfer Characteristics and Enhanced Heat Transfer Technology for Helium–Xenon Gas Mixtures

Author:

Zhao Fulong,Mei Yiguo,Liang Tiebo,Wang Bin,Jing Hao,Chen WeixiongORCID

Abstract

As one of the most promising working substances for space nuclear power sources, research on the heat transfer characteristics of helium–xenon gas mixtures has become the key issue in focus. In this paper, through an extensive literature research, the current research results are classified and organized. The results show that there are semi-empirical formulas for physical property parameters with high prediction accuracy, and there are also Nusselt correlations with small errors. However, both lack the support of experimental data. There is no systematic research on enhanced heat transfer technologies, and the conclusions of the existing studies are not significant, so they can only make limited reference contributions to the future study of enhanced heat transfer technologies. More flow and heat transfer experiments on helium–xenon mixtures are urgently needed, through detailed analysis of the heat transfer performance of helium–xenon flow, identifying the key factors affecting the heat transfer thermal resistance, and corresponding heat transfer enhancement measures to form an optimized design method applicable to helium–xenon heat exchangers. In this way, an enhanced heat transfer theory of helium–xenon heat exchangers can be developed.

Funder

Science and Technology on Reactor System Design Technology Laboratory

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Wang, Z. (2021). Research on Brayton Cycle Properties of Helium-Xenon Mixed Working Fluid Based on Space Nuclear Power System. [Master’s Thesis, Harbin Institute of Technology].

2. System design optimization for multimegawatt space nuclear power applications;Parlos;J. Propuls. Power,1990

3. Space nuclear reactor power system concepts with static and dynamic energy conversion;Energy Convers. Manag.,2008

4. Deployment history and design considerations for space reactor power systems;Acta Astronaut.,2009

5. Space nuclear power: An overview;Bennett;J. Propuls. Power,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3